Computing Curves Bounding Trigonometric Planar Maps: Symbolic and Hybrid Methods
نویسنده
چکیده
A few years ago S-H Kim investigated some problems at the boundary of number theory, optimization, and geometry. One question regarded an optimal packing of certain útriangular ovalø planar curves and another looked at some related transformations of R2 to R2 . These were investigated primarily using tools from calculus but it turns out that computational algebra methods may instead be employed to particular advantage. Moreover, generalizations that are beyond the reach of such methods are still amenable to hybrid approaches using numeric and symbolic methods in tandem. We introduce some of the specific problems and generalizations, and show by detailed example how such techniques may be implemented and deployed.
منابع مشابه
TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملShape Analysis of Planar Trigonometric Bézier Curves with Two Shape Parameters
The shape features of planar trigonometric Bézier curves with two shape parameters are analyzed. The necessary and sufficient conditions are derived for these curves having one or two inflection points, a loop or a cusp, or be locally or globally convex. All conditions are completely characterized by the relative position of the control polygon’s side vectors. Furthermore we discussed the influ...
متن کاملSpiral fat arcs - Bounding regions with cubic convergence
A bounding region for spiral curve segments shaped by two circular arcs, parts of the osculating circles at the spiral’s endpoints, and two lines is introduced. This bounding region, denoted Spiral Fat Arc (SFA) is simple to construct and process, and shows a cubic approximation order to a given spiral curve. Given a general planar parametric curve, it can be split at curvature extrema (and inf...
متن کاملControl point based exact description of higher dimensional trigonometric and hyperbolic curves and multivariate surfaces
Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of higher dimensional (rational) curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variable...
متن کاملPhysical Optics Calculation of Electromagnetic Scattering From Haack Series Nose Cone
In this paper, the physical optics method is used to study the problem of electromagnetic scattering from Haack series nose cone. First, a meshing scheme is introduced which approximates the curvature of the surface by piecewise linear functions in both axial and rotational directions. This results in planar quadrilateral patches and enables efficient determination of the illuminated region and...
متن کامل